p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.726C24, C24.108C23, C22.3812- 1+4, C22.4992+ 1+4, C23⋊2D4.37C2, C23.4Q8⋊67C2, C23.Q8⋊96C2, C23.106(C4○D4), (C22×C4).237C23, (C23×C4).182C22, C23.8Q8⋊143C2, C23.11D4⋊132C2, C23.10D4⋊113C2, C23.23D4⋊110C2, (C22×D4).301C22, C23.83C23⋊134C2, C2.49(C22.54C24), C2.115(C22.32C24), C2.C42.429C22, C2.54(C22.56C24), C2.123(C22.33C24), (C2×C4⋊C4).535C22, C22.574(C2×C4○D4), (C2×C22⋊C4).344C22, SmallGroup(128,1558)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.726C24
G = < a,b,c,d,e,f,g | a2=b2=c2=f2=g2=1, d2=c, e2=a, ab=ba, ac=ca, ede-1=ad=da, ae=ea, gfg=af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, dg=gd, geg=abe >
Subgroups: 548 in 232 conjugacy classes, 84 normal (22 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, D4, C23, C23, C23, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C24, C24, C2.C42, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C23×C4, C22×D4, C22×D4, C23.8Q8, C23.23D4, C23⋊2D4, C23.10D4, C23.Q8, C23.11D4, C23.4Q8, C23.83C23, C23.726C24
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, 2- 1+4, C22.32C24, C22.33C24, C22.54C24, C22.56C24, C23.726C24
Character table of C23.726C24
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ12 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ13 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ14 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ15 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ16 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ17 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | -2i | -2i | 2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ20 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 2i | 2i | -2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ21 | 4 | 4 | -4 | -4 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 2+ 1+4 |
ρ22 | 4 | -4 | -4 | 4 | -4 | -4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 2+ 1+4 |
ρ23 | 4 | -4 | 4 | -4 | -4 | 4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 2+ 1+4 |
ρ24 | 4 | -4 | -4 | 4 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 2+ 1+4 |
ρ25 | 4 | 4 | 4 | 4 | -4 | -4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 2+ 1+4 |
ρ26 | 4 | 4 | -4 | -4 | -4 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from 2- 1+4, Schur index 2 |
(1 27)(2 28)(3 25)(4 26)(5 54)(6 55)(7 56)(8 53)(9 48)(10 45)(11 46)(12 47)(13 52)(14 49)(15 50)(16 51)(17 39)(18 40)(19 37)(20 38)(21 42)(22 43)(23 44)(24 41)(29 33)(30 34)(31 35)(32 36)(57 64)(58 61)(59 62)(60 63)
(1 61)(2 62)(3 63)(4 64)(5 31)(6 32)(7 29)(8 30)(9 21)(10 22)(11 23)(12 24)(13 17)(14 18)(15 19)(16 20)(25 60)(26 57)(27 58)(28 59)(33 56)(34 53)(35 54)(36 55)(37 50)(38 51)(39 52)(40 49)(41 47)(42 48)(43 45)(44 46)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 23 27 44)(2 41 28 24)(3 21 25 42)(4 43 26 22)(5 20 54 38)(6 39 55 17)(7 18 56 40)(8 37 53 19)(9 60 48 63)(10 64 45 57)(11 58 46 61)(12 62 47 59)(13 32 52 36)(14 33 49 29)(15 30 50 34)(16 35 51 31)
(1 51)(2 39)(3 49)(4 37)(5 9)(6 22)(7 11)(8 24)(10 32)(12 30)(13 59)(14 25)(15 57)(16 27)(17 28)(18 60)(19 26)(20 58)(21 31)(23 29)(33 44)(34 47)(35 42)(36 45)(38 61)(40 63)(41 53)(43 55)(46 56)(48 54)(50 64)(52 62)
(1 53)(2 54)(3 55)(4 56)(5 28)(6 25)(7 26)(8 27)(9 39)(10 40)(11 37)(12 38)(13 42)(14 43)(15 44)(16 41)(17 48)(18 45)(19 46)(20 47)(21 52)(22 49)(23 50)(24 51)(29 57)(30 58)(31 59)(32 60)(33 64)(34 61)(35 62)(36 63)
G:=sub<Sym(64)| (1,27)(2,28)(3,25)(4,26)(5,54)(6,55)(7,56)(8,53)(9,48)(10,45)(11,46)(12,47)(13,52)(14,49)(15,50)(16,51)(17,39)(18,40)(19,37)(20,38)(21,42)(22,43)(23,44)(24,41)(29,33)(30,34)(31,35)(32,36)(57,64)(58,61)(59,62)(60,63), (1,61)(2,62)(3,63)(4,64)(5,31)(6,32)(7,29)(8,30)(9,21)(10,22)(11,23)(12,24)(13,17)(14,18)(15,19)(16,20)(25,60)(26,57)(27,58)(28,59)(33,56)(34,53)(35,54)(36,55)(37,50)(38,51)(39,52)(40,49)(41,47)(42,48)(43,45)(44,46), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,23,27,44)(2,41,28,24)(3,21,25,42)(4,43,26,22)(5,20,54,38)(6,39,55,17)(7,18,56,40)(8,37,53,19)(9,60,48,63)(10,64,45,57)(11,58,46,61)(12,62,47,59)(13,32,52,36)(14,33,49,29)(15,30,50,34)(16,35,51,31), (1,51)(2,39)(3,49)(4,37)(5,9)(6,22)(7,11)(8,24)(10,32)(12,30)(13,59)(14,25)(15,57)(16,27)(17,28)(18,60)(19,26)(20,58)(21,31)(23,29)(33,44)(34,47)(35,42)(36,45)(38,61)(40,63)(41,53)(43,55)(46,56)(48,54)(50,64)(52,62), (1,53)(2,54)(3,55)(4,56)(5,28)(6,25)(7,26)(8,27)(9,39)(10,40)(11,37)(12,38)(13,42)(14,43)(15,44)(16,41)(17,48)(18,45)(19,46)(20,47)(21,52)(22,49)(23,50)(24,51)(29,57)(30,58)(31,59)(32,60)(33,64)(34,61)(35,62)(36,63)>;
G:=Group( (1,27)(2,28)(3,25)(4,26)(5,54)(6,55)(7,56)(8,53)(9,48)(10,45)(11,46)(12,47)(13,52)(14,49)(15,50)(16,51)(17,39)(18,40)(19,37)(20,38)(21,42)(22,43)(23,44)(24,41)(29,33)(30,34)(31,35)(32,36)(57,64)(58,61)(59,62)(60,63), (1,61)(2,62)(3,63)(4,64)(5,31)(6,32)(7,29)(8,30)(9,21)(10,22)(11,23)(12,24)(13,17)(14,18)(15,19)(16,20)(25,60)(26,57)(27,58)(28,59)(33,56)(34,53)(35,54)(36,55)(37,50)(38,51)(39,52)(40,49)(41,47)(42,48)(43,45)(44,46), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,23,27,44)(2,41,28,24)(3,21,25,42)(4,43,26,22)(5,20,54,38)(6,39,55,17)(7,18,56,40)(8,37,53,19)(9,60,48,63)(10,64,45,57)(11,58,46,61)(12,62,47,59)(13,32,52,36)(14,33,49,29)(15,30,50,34)(16,35,51,31), (1,51)(2,39)(3,49)(4,37)(5,9)(6,22)(7,11)(8,24)(10,32)(12,30)(13,59)(14,25)(15,57)(16,27)(17,28)(18,60)(19,26)(20,58)(21,31)(23,29)(33,44)(34,47)(35,42)(36,45)(38,61)(40,63)(41,53)(43,55)(46,56)(48,54)(50,64)(52,62), (1,53)(2,54)(3,55)(4,56)(5,28)(6,25)(7,26)(8,27)(9,39)(10,40)(11,37)(12,38)(13,42)(14,43)(15,44)(16,41)(17,48)(18,45)(19,46)(20,47)(21,52)(22,49)(23,50)(24,51)(29,57)(30,58)(31,59)(32,60)(33,64)(34,61)(35,62)(36,63) );
G=PermutationGroup([[(1,27),(2,28),(3,25),(4,26),(5,54),(6,55),(7,56),(8,53),(9,48),(10,45),(11,46),(12,47),(13,52),(14,49),(15,50),(16,51),(17,39),(18,40),(19,37),(20,38),(21,42),(22,43),(23,44),(24,41),(29,33),(30,34),(31,35),(32,36),(57,64),(58,61),(59,62),(60,63)], [(1,61),(2,62),(3,63),(4,64),(5,31),(6,32),(7,29),(8,30),(9,21),(10,22),(11,23),(12,24),(13,17),(14,18),(15,19),(16,20),(25,60),(26,57),(27,58),(28,59),(33,56),(34,53),(35,54),(36,55),(37,50),(38,51),(39,52),(40,49),(41,47),(42,48),(43,45),(44,46)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,23,27,44),(2,41,28,24),(3,21,25,42),(4,43,26,22),(5,20,54,38),(6,39,55,17),(7,18,56,40),(8,37,53,19),(9,60,48,63),(10,64,45,57),(11,58,46,61),(12,62,47,59),(13,32,52,36),(14,33,49,29),(15,30,50,34),(16,35,51,31)], [(1,51),(2,39),(3,49),(4,37),(5,9),(6,22),(7,11),(8,24),(10,32),(12,30),(13,59),(14,25),(15,57),(16,27),(17,28),(18,60),(19,26),(20,58),(21,31),(23,29),(33,44),(34,47),(35,42),(36,45),(38,61),(40,63),(41,53),(43,55),(46,56),(48,54),(50,64),(52,62)], [(1,53),(2,54),(3,55),(4,56),(5,28),(6,25),(7,26),(8,27),(9,39),(10,40),(11,37),(12,38),(13,42),(14,43),(15,44),(16,41),(17,48),(18,45),(19,46),(20,47),(21,52),(22,49),(23,50),(24,51),(29,57),(30,58),(31,59),(32,60),(33,64),(34,61),(35,62),(36,63)]])
Matrix representation of C23.726C24 ►in GL10(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 3 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 0 | 0 |
2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 3 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(10,GF(5))| [1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1],[2,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,3,1],[4,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,0,0,4,0,0],[2,4,0,0,0,0,0,0,0,0,3,3,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,3,1] >;
C23.726C24 in GAP, Magma, Sage, TeX
C_2^3._{726}C_2^4
% in TeX
G:=Group("C2^3.726C2^4");
// GroupNames label
G:=SmallGroup(128,1558);
// by ID
G=gap.SmallGroup(128,1558);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,120,758,723,794,185]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^2=g^2=1,d^2=c,e^2=a,a*b=b*a,a*c=c*a,e*d*e^-1=a*d=d*a,a*e=e*a,g*f*g=a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,d*g=g*d,g*e*g=a*b*e>;
// generators/relations
Export